
  

AFRL-IF-RS-TR-2005-383 
Final Technical Report 
November 2005 
 
 
 
 
 
 
GINSU:  GUARANTEED INTERNET STACK 
UTILIZATION 
 
  
Trusted Information Systems, Inc. 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. ARPS 
  
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

 
STINFO FINAL REPORT 

 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-383 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 
APPROVED:         /s/ 
 

DAVID E. KRZYSIAK 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:           /s/ 
 

WARREN H. DEBANY, JR., Technical Advisor 
Information Grid Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
NOVEMBER 2005

3. REPORT TYPE AND DATES COVERED 
Final Jun 01 – Apr 03 

4. TITLE AND SUBTITLE 
GINSU:  GUARANTEED INTERNET STACK UTILIZATION 

6. AUTHOR(S) 
Roger Knobbe and 
Andrew Purtell 
 

5.  FUNDING NUMBERS 
C     - F33615-01-C-1973 
PE   - 609199F  
PR   - ARPS 
TA   -  NZ 
WU  -  OL 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Trusted Information Systems 
3060 Washington Road 
Glenwood Maryland 21738 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFGA 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                             Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2005-383 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  David E. Krzysiak/IFGA/(315) 330-7454/ David.Krzysiak@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
To design and implement an alternative IP host stack capable of guaranteeing availability of the stack to individual 
processes running on a computer. An IP host stack implementation is an important element of any networked host’s 
operating system.  Guaranteeing availability of network access requires a survivable host stack implementation as an 
alternative to today’s IP host stack implementation.  
 

15. NUMBER OF PAGES
34

14. SUBJECT TERMS  
Communications Networks, Computer Architecture Data Links, Internet, Protocol Stacks 

16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

 i

 

TABLE OF CONTENTS 
 
 

 

1.  GINSU OVERVIEW............................................................................................................................... 1 

2.   GINSU ARCHITECTURE.................................................................................................................... 1 
2.1  GINSU_COMMON ................................................................................................................................... 4 

2.1.1  Hooks............................................................................................................................................ 4 
2.1.2  Maps ............................................................................................................................................. 8 
2.1.3  Resource Management ................................................................................................................. 9 
2.1.4  Logging....................................................................................................................................... 12 

2.2  GINSU_LOW ........................................................................................................................................ 12 
2.2.1  Installing Resource Constraints ................................................................................................. 14 
2.2.2  Startup Sequence ........................................................................................................................ 19 

2.3  THE DYNAMIC PACKET FILTER (DPF) API......................................................................................... 19 
2.4  QUEUE MANAGEMENT........................................................................................................................ 20 
2.5  SLICE SCHEDULING............................................................................................................................. 21 

2.5.1  Accounting Practices.................................................................................................................. 22 
2.5.2  Resource Constraint Enforcement .............................................................................................. 24 

2.6  GINSU_PROC ....................................................................................................................................... 26 
3.  DEMONSTRATION............................................................................................................................. 28 

4.  FUTURE WORK................................................................................................................................... 28 

5.  REFERENCES ...................................................................................................................................... 29 



 

 ii

 
 
 
 

LIST OF FIGURES 
 
 
Figure 1:  The High-level GINSU System Architecture..................................................... 2 

Figure 2:  Module Stacking in the GINSU System............................................................. 4 

Figure 3:  The GINSU Generic Resource Framework...................................................... 10 

Figure 4:  The GINSU Task Structure .............................................................................. 22 

Figure 5:  The GINSU Slice Structure.............................................................................. 23 

Figure 6:  The GINSU Sock Structure.............................................................................. 24 

 



 

 1

 

1.  GINSU Overview 
 
GINSU is a DARPA Fault Tolerant Networking, Focused Research Topic project.  We 
improve the integrity and robustness of the Linux host operating system by isolating and 
monitoring traffic streams within the kernel.  We allow an administrator to pre-allocate 
system resources across multiple axes, including process name, connection state, UNIX 
user or group identity, and source and/or destination endpoint addresses.  GINSU 
monitors scarce resources, such as socket buffers, TCP control blocks, TCP Ports, CPU 
time, etc., across these axes and makes scheduling decisions with respect to the 
allotments of these resources and their actual use. GINSU does “early demultiplexing” of 
network traffic in order to determine the ultimate owner of network traffic.  GINSU 
ensures that schedulable entities (network streams, processes, and protocols) are isolated 
from each other across all resource boundaries and guarantees that malicious or 
unanticipated levels of network traffic cannot compromise operating system and service 
integrity. 

2.   GINSU Architecture 
 
GINSU presently supports the Linux open-source operating system, specifically, any 
distribution based on late versions of the 2.4-series kernel. On Linux, GINSU is 
implemented as a collection of loadable kernel modules. When GINSU modules are not 
loaded we do not impact normal Linux kernel functions at all.  We set up GINSU-specific 
state and bring all managed network resources under the GINSU regime once our 
modules are loaded by the system administrator or by automatic boot-time initialization 
scripts. 
 
Below we present a high level view of the GINSU system architecture. 
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Figure 1:  The High-level GINSU System Architecture 
 
The wide arrows in the above diagram represent the flow of network packets through a 
GINSU-enhanced kernel. The diagram is ordered from bottom to top from lowest- (i.e. 
closest to hardware) level up through successive layers of abstraction to high- (i.e. 
application) level network processing functions.  
 
GINSU builds upon the best ideas from Scout/Escort (the path abstraction), SILK (open 
source host integration), Exokernel (logical stack encapsulation and dynamic packet 
classification), and NAI Labs' AMP Channel Stack (traffic isolation) and combines and 
extends them into a portable, maintainable, and manageable host package.  We embrace a 
kernel-space approach rather than a user-space approach, as research results from the 
latter have tended to exhibit unacceptable performance and generally require kernel-space 
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modifications anyway. The cornerstone of the GINSU design is the concept of traffic 
slices.  A slice subdivides network traffic into demultiplexed "streams.”  These slices are 
independently scheduled and monitored.  One or more catch-all slices are allocated for 
unauthenticated traffic.  At the heart of GINSU is the ability to track per-traffic-slice 
resource consumption in order to provide fairness between authenticated and 
unauthenticated traffic resource use, as well as provide non-interference between 
individual traffic slices. Slices may be allocated for each endpoint created by an 
application or kernel process for receiving or transmitting network traffic, or for some 
aggregate, for example, a particular destination TCP port on the host, or a particular 
source subnet. The slice hierarchy and the assignment of traffic classes to slices is 
determined by the administrator and performed at run-time through the use of command-
line utilities by the administrator. As traffic is partitioned into slices, the administrator 
may also set limits on or pre-allocate reservations of network-related kernel resources. 
These include: connection tracking structures; message buffers; available bandwidth; and 
available CPU processing time.  
 
At the earliest possible point in per-packet processing, GINSU determines, based on 
endpoint addressing information contained within the packet, whether the packet belongs 
either to 1) a known and authenticated receiver, 2) an unauthenticated receiver (either 
new or unknown), or 3) no receiver at all. This process is known as early demux. (Note 
that the term “receiver” has multiple connotations here: by “receiver” we mean both a 
specific endpoint and also the traffic slice containing this endpoint.) This analysis is 
performed asynchronously at interrupt time using an efficient tri-based approach 
pioneered in the Exokernel and ported to the Linux platform as part of this research. Tries 
are populated on socket (endpoint) creation and address binding, as appropriate, and 
depopulated upon socket destruction. Based on the results of this analysis, GINSU may 
simply discard the packet before any host resources or kernel packet processing time is 
consumed at all. Otherwise, the packet is either marked for traffic shaping, or it is queued 
for subsequent standard protocol processing. Unless the received packet is destined for an 
endpoint created by the currently executing process, it will be deferred until that process 
is selected for execution by the OS scheduler. This feature is known as lazy receiver 
processing. Aside from early demux, GINSU may also be distinguished from standard 
Linux here by its use of lazy receiver processing. The combination of early discard and 
lazy receiver processing implies that, under certain circumstances, especially those likely 
to be encountered during an attempted denial-of-service attack, GINSU requires less 
processing than unmodified Linux. 
 
If a packet is marked for traffic-shaping then further GINSU processing takes place 
immediately. GINSU implements a modular framework for ingress traffic-shaping 
modeled after existing Linux facilities for egress traffic-shaping. Within this framework 
we modified the existing Linux hierarchical token bucket (HTB) egress packet scheduler 
for ingress operation.   
 
The GINSU software is partitioned into four loadable kernel modules. The 
ginsu_common module contains generic functions for intercepting kernel actions (the 
hook API), a very useful and flexible hash table implementation (the map API), and a 
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generic hierarchical resource management framework (the resource API). The ginsu_low 
module implements all intelligent GINSU functionality, utilizing the hook and resource 
APIs provided by ginsu_common. This functionality includes the dynamic packet 
filtering facility (or DPF), the ingress traffic-shaping framework (the ingress-shaping 
API), a command-line-based management interface, and all slice and socket resource 
tracking logic. The ginsu_sch_htb module implements a hierarchical token bucket (or 
HTB) traffic-shaping algorithm for use with ginsu_low's ingress-shaping API. Finally, 
the ginsu_proc module provides a read-only view into internal GINSU state via a file tree 
in the Linux /proc filesystem.  
 

ginsu_sch_htb

ginsu_low ginsu_proc

ginsu_common

 
 

Figure 2:  Module Stacking in the GINSU System 
 
Developers wishing to extend the GINSU framework to allow additional resource 
accounting or to provide some other enhanced functionality should make themselves 
familiar with the GINSU source code. Significant aspects of that source code are 
described below. Administrators interested in how the GINSU system operates, from a 
high-level perspective, may refer to document TR-XXX “GINSU Administrative Guide” 
and the specially marked sections in this document. 

2.1  ginsu_common 
 
The ginsu_common module contains generic functions for intercepting kernel actions 
(the hook API), a very useful and flexible hash table implementation (the map API), and 
a generic hierarchical resource management framework (the resource API). 
 
2.1.1  Hooks 
 
GINSU hooks provide additional generic interception points for various actions above 
and beyond those provided by a standard Linux kernel. Also, various hooks for internal 
GINSU actions are provided. Currently the following hook points are defined: 

GINSU_HOOK_SCHEDULER 
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within the system scheduler, invoked whenever a context switch occurs 
 

GINSU_HOOK_TIMER 
within the system clock (timer) soft interrupt handler, invoked once per 
time-slice (100 HZ default on the Intel IA-32 platform) 

 
GINSU_HOOK_SYS_PRE_FORK 

invoked at the start of the fork syscall, just prior to execution of privileged 
(kernel) code 

 
GINSU_HOOK_SYS_POST_FORK 

invoked from within the fork syscall, subsequent to execution of 
privileged code 

 
GINSU_HOOK_SYS_PRE_ACCEPT 

invoked at the start of the accept socket syscall, just prior to execution of 
privileged code 

 
GINSU_HOOK_SYS_POST_ACCEPT 

invoked from within the accept socket syscall, subsequent to execution of 
privileged code 

 
GINSU_HOOK_SYS_PRE_BIND 

invoked at the start of the bind socket syscall, just prior to execution of 
privileged code 

 
GINSU_HOOK_SYS_POST_BIND 

invoked from within the bind socket syscall, subsequent to execution of 
privileged code 

 
GINSU_HOOK_SYS_PRE_CLOSE 

invoked at the start of the close syscall, just prior to execution of 
privileged code 

 
GINSU_HOOK_SYS_POST_CLOSE 

invoked from within the close syscall, subsequent to execution of 
privileged code 

 
GINSU_HOOK_SYS_PRE_CONNECT 

invoked at the start of the connect socket syscall, just prior to execution of 
privileged code 

 
GINSU_HOOK_SYS_POST_CONNECT 

invoked from within the connect socket syscall, subsequent to execution 
of privileged code 

 
 
 
GINSU_HOOK_SYS_PRE_LISTEN 
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invoked at the start of the listen socket syscall, just prior to execution of 
privileged code 

 
GINSU_HOOK_SYS_POST_LISTEN 

invoked from within the listen socket syscall, subsequent to execution of 
privileged code 

 
GINSU_HOOK_SYS_PRE_SHUTDOWN 

invoked at the start of the shutdown socket syscall, just prior to execution 
of privileged code 

 
GINSU_HOOK_SYS_POST_SHUTDOWN 

invoked from within the shutdown socket syscall, subsequent to execution 
of privileged code 

 
GINSU_HOOK_SYS_PRE_SOCKET 

invoked at the start of the 'socket' socket syscall, just prior to execution of 
privileged code 

 
GINSU_HOOK_SYS_POST_SOCKET 

invoked from within the 'socket' socket syscall, subsequent to execution of 
privileged code 

 
GINSU_HOOK_SYS_PRE_SOCKETPAIR 

invoked at the start of the socketpair socket syscall, just prior to 
execution of privileged code 

 
GINSU_HOOK_SYS_POST_SOCKETPAIR 

invoked from within the socketpair socket syscall, subsequent to 
execution of privileged code 

 
GINSU_HOOK_SYS_PRE_EXIT 

invoked at the start of the exit syscall, just prior to execution of privileged 
code (control will not return to the application after privileged actions 
complete) 

 
GINSU_HOOK_SYS_POST_EXIT 

invoked from within the exit syscall, subsequent to execution of privileged 
code (control will not return to the application after privileged actions 
complete) 
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GINSU_HOOK_PKT_RX 
invoked from the network soft interrupt whenever a packet is received 
from a network device 

 
GINSU_HOOK_PKT_TX 

invoked whenever a packet is presented to a network device for immediate 
transmission 

GINSU_HOOK_SLICE_CREATE 
invoked by ginsu_low whenever a GINSU slice is created 

 
GINSU_HOOK_SLICE_DESTROY 

invoked by ginsu_low whenever a GINSU slice is destroyed 
 

GINSU_HOOK_SLICE_SOCK_ASSOCIATE 
invoked by ginsu_low whenever a GINSU socket resource is associated 
with a parent slice resource 

 
GINSU_HOOK_SLICE_SOCK_DISASSOCIATE 

invoked by ginsu_low whenever a GINSU socket resource is disassociated 
from a parent slice resource 

 
GINSU_HOOK_SLICE_TASK_ASSOCIATE 

invoked by ginsu_low whenever a GINSU socket resource is associated 
with a parent task resource 

 
GINSU_HOOK_DPF_INSERT 

invoked by ginsu_low whenever a dynamic packet filter rule is about to be 
 inserted into the system trie 

 
GINSU_HOOK_DPF_DELETE 

invoked by ginsu_low whenever a DPF filter rule is about to be removed 
from the system trie 

 
GINSU_HOOK_GET_PROC_STATS 

invoked by ginsu_proc to collect a human-readable list of global statistics 
and indicators for presentation to the human user via the /proc interface 

 
A user of the hook API first registers one or more functions to be called at a specific hook 
site. These functions may be either passive, meaning they will not seek to alter decisions 
made by the kernel, or authoritative, meaning they may seek to alter decisions made by 
the kernel. Authoritative hooks are run before passive hooks. In the event that an 
authoritative hook cancels the current action, no further authoritative or any passive 
hooks will be invoked and an error condition will be signaled to the kernel. At any point a 
hook function may be unregistered. 
   

int ginsu_hook_register (int where, int type, ginsu_hook_func_t f); 
int ginsu_hook_unregister (int where, ginsu_hook_func_t f); 
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Internally, the hook API provides functions for use within GINSU kernel modules for 
driving hook invocations.  
 

int ginsu_hook_call (int where, ...); 

 
The exact number and type of arguments passed to the hook function vary from hook site 
to hook site, so variadic functions are used.  
 
2.1.2  Maps 
 
The ginsu_common module also provides a generic hash table implementation derived 
from the Scout [?] operating system. Using this "map" interface, a GINSU programmer 
may uniformly manage dynamic keyed lookup of a collection of data items of arbitrary 
size. 
 
These functions create and destroy map structures, respectively: 
 

ginsu_map_t ginsu_map_create (int nbuckets, int key_size); 
void        ginsu_map_destroy (ginsu_map_t m); 

 
This function returns the current number of items contained within a map: 
 

int  ginsu_map_count (ginsu_map_t m); 

 
This function returns the size in octets of fixed-sized keys or -1 for variable (string) keys. 
 

size_t  ginsu_map_key_size (ginsu_map_t m); 

 
These functions manage the insertion and removal of items with fixed size keys into/from 
a map: 
 

ginsu_map_binding_t ginsu_map_bind (ginsu_map_t m, const void * key,  
unsigned long value); 

int                 ginsu_map_unbind (ginsu_map_t m, const void * key); 
int                 ginsu_map_remove_binding (ginsu_map_t m,  

ginsu_map_binding_t b); 

 
This function performs a keyed lookup of an item within a map: 
 

int ginsu_map_resolve (ginsu_map_t m, const void * key, int key_size, 
unsigned long * value); 

 
These functions allow the user to enumerate over all items contained within a map: 
 

void           ginsu_map_walk_init (ginsu_map_walk_t, ginsu_map_t m); 
ginsu_map_el_t ginsu_map_walk_next (ginsu_map_walk_t w); 
void           ginsu_map_walk_done (ginsu_map_walk_t w); 

 
Finally, these functions manage insertion and removal of items with variable sized 
(string) keys into/from a map: 
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ginsu_map_binding_t ginsu_map_var_bind (ginsu_map_t m, const void * key, 

int key_size, unsigned long value); 
int                 ginsu_map_var_unbind (ginsu_map_t m,  

const void * key, int key_size); 
int                 ginsu_map_var_resolve (ginsu_map_t m,  

const void *key, int key_size,  
unsigned long * value); 

 
2.1.3  Resource Management 
 
The ginsu_common module also exports the GINSU generic hierarchical resource 
management framework. Under this regime, arbitrarily sized blobs of binary data 
(presumably kernel resources or internal GINSU state) may be uniformly managed. 
Though the framework is agnostic about the internal structure of resources it does require 
that each distinct resource type be assigned a unique integer selector. One or more 
attributes may be associated with a given resource. The framework is also agnostic 
regarding the internal structure of attributes. However, for each resource type, unique 
integer selectors must be used when getting or setting an attribute. Relationships among 
resources are maintained in a directed graph. Parent-child relationships are represented as 
bidirectional edges within that graph. When each resource is created, type-specific 
manage and release methods are provided by the caller, for initializing and for cleaning 
up state, respectively. The primary benefit of the GINSU resource management 
framework is the automatic destruction (release) of child resources when parents are 
explicitly destroyed. This framework also makes trivial resource enumeration up from 
children to parents, or down from parents to children. Separately, per-type maps are used 
to store pointers to every instance of a given resource type. Type maps are primarily used 
for efficient enumeration of all instances of a particular type, but because type map 
entries are indexed by unique type-specific keys, a programmer may exploit these maps 
for rapid location of a particular resource instance without resorting to an expensive 
traversal of the resource hierarchy. 
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Figure 3:  The GINSU Generic Resource Framework 
 
This function creates a new resource and associates it with a unique key, a type-specific 
manage function, and a type-specific release function: 
 

ginsu_resource_t ginsu_resource_new (int type, void * key,  
int key_len, void * data, int data_len, 

     int (*manage)(ginsu_resource_t), 
     int (*release)(ginsu_resource_t)); 
 
This function frees (releases) a resource and any children: 
 

void ginsu_resource_free (ginsu_resource_t r); 

 
This function frees all resources of a given type and any of their children, regardless of 
type: 
 

void ginsu_resource_free_all (int type); 

 
These functions allow the user to get or set resource attributes: 
 

int    ginsu_resource_get_attr (ginsu_resource_t r, int attr,  
void ** data, int * data_len); 

int    ginsu_resource_set_attr (ginsu_resource_t r, int attr,  
void * data, int data_len); 

int    ginsu_resource_get_attr_simple (ginsu_resource_t r, int attr, 
unsigned long * val); 

int    ginsu_resource_set_attr_simple (ginsu_resource_t r, int attr, 
unsigned long val); 

void * ginsu_resource_get_data (ginsu_resource_t r, int * data_len); 
int    ginsu_resource_set_data (ginsu_resource_t r, void * data, 

int data_len); 
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These functions enumerate the resource hierarchy starting at a specific resource if 'r' is 
non-NULL, or starting at the roots of the specified type otherwise. During the 
enumeration, canned actions are taken if any of the desired resource type is found.  
 

int ginsu_resource_enum_attr_find_first_up (ginsu_resource_t r, 
   int which, int attr, ginsu_resource_t * result); 

int ginsu_resource_enum_attr_find_first_down (ginsu_resource_t, 
   int which, int attr, ginsu_resource_t * result); 

int ginsu_resource_enum_attr_simple_min_up (ginsu_resource_t r, 
   int which, int nr_attrs, int * attrs,  

unsigned long * vals); 
int ginsu_resource_enum_attr_simple_min_down (ginsu_resource_t, 

   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_max_up (ginsu_resource_t r, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_max_down (ginsu_resource_t, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_sum_up (ginsu_resource_t r, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_sum_down (ginsu_resource_t, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_inc_up (ginsu_resource_t r, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_inc_down (ginsu_resource_t, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_dec_up (ginsu_resource_t r, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

int ginsu_resource_enum_attr_simple_dec_down (ginsu_resource_t, 
   int which, int nr_attrs, int * attrs,  
   unsigned long * vals); 

 
These functions will enumerate the resource hierarchy and compare two attributes: a 
limit, and a count. If the count attribute for a resource is found to exceed the limit 
attribute for that same resource, a pointer to that resource will be returned in result. 
 

int ginsu_resource_enum_attr_simple_test_limit_up (ginsu_resource_t r, 
int which, int limit_attr, int count_attr, 
ginsu_resource_t * result); 

int ginsu_resource_enum_attr_simple_test_limit_down (ginsu_resource_t r, 
int which, int limit_attr, int count_attr, 
ginsu_resource_t * result); 

 
This function will allow the user to individually enumerate all resources of a given type: 
 

ginsu_resource_t ginsu_resource_enumerate (int type,  
unsigned long * cookie); 

 
This function locates a resource given a type and a unique key: 
 

ginsu_resource_t ginsu_resource_find (int type, void * key, int key_len); 
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These functions let the user manage parent-child relationships among resources: 
 

int ginsu_resource_parent (ginsu_resource_t r, ginsu_resource_t parent); 
int ginsu_resource_reparent (ginsu_resource_t r,  

ginsu_resource_t old_parent, ginsu_resource_t new_parent); 
int ginsu_resource_unparent (ginsu_resource_t r,ginsu_resource_t parent); 

 
2.1.4  Logging 
 
When resource limits are exceeded, or when current system conditions require proactive 
action to maintain a specified resource reservation, GINSU will send a detailed message 
to the system logging (syslog) facility. A table describing the format of these messages 
and presenting an example follows: 
 

timestamp module facility resource Message data 
     
Jun 30 14:21:26 GINSU: SLICE: socket_limit Sid=31 now=100 limit=100 

 
The following function provides the programmatic interface to this facility: 
 
 #define GINSU_SYSLOG_EMERG  0 system is unusable 
 #define GINSU_SYSLOG_ALERT  1 action must be taken immediately 
 #define GINSU_SYSLOG_CRIT  2 critical conditions 
 #define GINSU_SYSLOG_ERR  3 error conditions 
 #define GINSU_SYSLOG_WARNING 4 warning conditions 
 #define GINSU_SYSLOG_NOTICE 5 normal, but significant conditions 
 #define GINSU_SYSLOG_INFO  6 informational 
 #define GINSU_SYSLOG_DEBUG  7 debug level messages 
 
 int ginsu_syslog (int severity, char * module, char * facility,  

char * resource, char * fmt, ...); 

 

2.2  ginsu_low 
 
The ginsu_low module implements all intelligent GINSU functionality, utilizing the hook 
and resource APIs provided by ginsu_common. This functionality includes the dynamic 
packet-filtering facility (or DPF), the ingress traffic-shaping framework (the ingress-
shaping API), a command-line-based management interface, and all slice and socket 
resource tracking logic. 
 
As previously discussed, GINSU partitions network traffic into distinct slices. Each slice 
may be individually associated with resource limits or reservations. A default slice 
collects all traffic not otherwise directed. A hierarchical token bucket traffic-shaping 
scheme (implemented in conjunction with the ginsu_sch_htb module) provides effective 
limits and reservations on different classes of network traffic. Simple limits on message 
buffer memory, connection table entries, and CPU timeslice consumption are also 
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provided. Simple reservations for connection table entries and network bandwidth usage 
are supported. Internally, Linux creates a socket for each distinct endpoint. GINSU 
dynamically creates socket resources as Linux sockets are created or destroyed by 
applications. Sockets are automatically assigned to slices according to their source and/or 
destination endpoint addressing information. ginsu_low uses the socket syscall 
interposition points provided by ginsu_common to monitor application activity for socket 
creation, endpoint address binding, and socket destruction events.  
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2.2.1  Installing Resource Constraints 
 
An administrator may install slice partitioning rules and their corresponding reservations 
and limits through extensions to the standard Linux IPTables packet-matching rule 
language. IPTables is the Linux interface to the network subsystem for use in firewalling, 
packet inspection, or packet rewriting applications. We have added a custom GINSU 
iptables table and LIMIT and RESERVE rule targets.  
 
  Usage: iptables -[ADC] chain rule-specification [options] 
         iptables -[RI] chain rulenum rule-specification [options] 
         iptables -D chain rulenum [options] 
         iptables -[LFZ] [chain] [options] 
         iptables -[NX] chain 
         iptables -E old-chain-name new-chain-name 
         iptables -P chain target [options] 
 

  LIMIT target options: 
 
    --limit-timeslice <percent>        Limit total percentage of each 
                                         timeslice that may be consumed from 
                                         the owner process for this flow. 
    --limit-bandwidth <bits>           Limit flow bandwidth to <bits> 
                                         bits/second. 
    --limit-bandwidth-octets <octets>  Like --limit-bandwidth, but in units 
                                         of octets instead of bits. 
    --limit-sockets <count>            Cap total number of unique endpoints 
                                         allowed for the given flow. 
    --limit-connections <count>        Cap total number of connections for 
                                         the given flow (includes half-open). 
    --limit-queue <count>              Limit the maximum number of queued 
                                         sk_buffs for the given flow. 
    --renice <priority>                Renices (decreases) base priority of  
                                         owner process to the given limit. 
    --euid <euid>                      Only match if effective user == euid. 
    --egid <egid>                      Only match if effective group == egid. 
    --sid <sid>                        Attach rule to slice with given SID. 
 

  RESERVE target options: 
 
    --reserve-bandwidth <bits>         Reserve flow bandwidth of <bits> 
                                         bits/second. 
    --reserve-bandwidth-octets <bytes> Like --reserve-bandwidth, but in units 
                                         of octets instead of bits. 
    --reserve-connections <count>      Reserve a number of connection slots 
                                         for the given flow. 
    --renice <priority>                Renices (increases) base priority of  
                                         owner process up to the given 
                                         reservation. 
    --euid <euid>                      Only match if effective user == euid. 
    --egid <egid>                      Only match if effective group == egid. 
    --sid <sid>                        Attach rule to slice with given SID. 

 
 
These custom targets are in addition to the traditional iptables matches and extensions, 
portions of which are excerpted below from the iptables manual: 
 
PARAMETERS 
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The following parameters make up a rule specification (as used in the add, delete, insert, 
replace and append commands). 
 
-p, --protocol [!] protocol 
 
The protocol of the rule or of the packet to check. The specified protocol can be one of 
tcp, udp, icmp, or all, or it can be a numeric value, representing one of these protocols or 
a different one. A protocol name from /etc/protocols is also allowed. A "!" argument 
before the protocol inverts the test. The number zero is equivalent to all. Protocol all will 
match with all protocols and is taken as default when this option is omitted. 
 
-s, --source [!] address[/mask] 
 
Source specification. Address can be either a hostname, a network name, or a plain IP 
address. The mask can be either a network mask or a plain number, specifying the 
number of 1's at the left side of the network mask. Thus, a mask of 24 is equivalent to 
255.255.255.0. A "!" argument before the address specification inverts the sense of the 
address. The flag --src is a convenient alias for this option. 
 
-d, --destination [!] address[/mask] 
 
Destination specification. See the description of the -s (source) flag for a detailed 
description of the syntax. The flag --dst is an alias for this option. 
-i, --in-interface [!] [name] 
 
Optional name of an interface via which a packet is received (for packets entering the 
INPUT, FORWARD and PREROUTING chains). When the "!" argument is used 
before the interface name, the sense is inverted. If the interface name ends in a "+", then 
any interface which begins with this name will match. If this option is omitted, the string 
"+" is assumed, which will match with any interface name. 
 
-o, --out-interface [!] [name] 
Optional name of an interface via which a packet is going to be sent (for packets entering 
the FORWARD, OUTPUT and POSTROUTING chains). When the "!" argument is 
used before the interface name, the sense is inverted. If the interface name ends in a "+", 
then any interface which begins with this name will match. If this option is omitted, the 
string "+" is assumed, which will match with any interface name. 
 
MATCH-EXTENSIONS 
 
iptables can use extended packet-matching modules. These are loaded in two ways: 
implicitly, when -p or --protocol is specified, or with the -m or --match options, 
followed by the matching module name; after these, various extra command line options 
become available, depending on the specific module. You can specify multiple extended 



 

 16

match modules in one line, and you can use the -h or --help options after the module has 
been specified to receive help specific to that module. 
 
The following are included in the base package, and most of these can be preceded by a ! 
to invert the sense of the match. 
 
Tcp 
 
These extensions are loaded if `--protocol tcp' is specified. It provides the following 
options: 
 
--source-port [!] [port[:port]] 
 
Source port or port range specification. This can either be a service name or a port 
number. An inclusive range can also be specified, using the format port:port. If the first 
port is omitted, "0" is assumed; if the last is omitted, "65535" is assumed. If the second 
port is greater than the first they will be swapped. The flag --sport is an alias for this 
option. 
 
--destination-port [!] [port[:port]] 
 
Destination port or port range specification. The flag --dport is an alias for this option. 
 
--tcp-flags [!] mask comp 
Match when the TCP flags are as specified. The first argument is the flags which we 
should examine, written as a comma-separated list, and the second argument is a comma-
separated list of flags which must be set. Flags are: SYN ACK FIN RST URG PSH 
ALL NONE. Hence the command 
iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN 
will only match packets with the SYN flag set, and the ACK, FIN and RST flags unset. 
 
[!] --syn 
 
Only match TCP packets with the SYN bit set and the ACK and FIN bits cleared. Such 
packets are used to request TCP connection initiation; for example, blocking such packets 
coming in an interface will prevent incoming TCP connections, but outgoing TCP 
connections will be unaffected. It is equivalent to --tcp-flags SYN,RST,ACK SYN. If 
the "!" flag precedes the "--syn", the sense of the option is inverted. 
 
--tcp-option [!] number 
 
Match if TCP option set. 
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Udp 

 
These extensions are loaded if `--protocol udp' is specified. It provides the following 
options: 
--source-port [!] [port[:port]] 
 
Source port or port range specification. See the description of the --source-port option of 
the TCP extension for details. 
 
--destination-port [!] [port[:port]] 
 
Destination port or port range specification. See the description of the --destination-port 
option of the TCP extension for details. 
For example, the following rule partitions traffic directed at a local Web server into a 
distinct slice with a 60 mega-bit-per-second upper bound on available network 
bandwidth. (Leftover bandwidth is then available for urgent or administrative actions.) 
 

iptables -t ginsu -A PREROUTING -p tcp --destination-port http  
-j LIMIT --limit-bandwidth 62914560 

 
The ‘limit-queue’ limit option sets a maximum bound on the length of the slice queue. 
This is not an aggregate limit, however – each child slice gets the same limit. Setting the 
queue limit to zero effectively discards matching traffic at DPF demultiplexing time, 
which is the most effective way to shed unwanted traffic. Setting the bandwidth limit of a 
slice to zero will also drop traffic, but not as efficiently. One can install DPF filters for 
obvious attack traffic with “null route” straight to early discard as follows: 
 

iptables -t ginsu -A PREROUTING –s netblock/mask –-in-interface iface 
-j LIMIT --limit-queue 0 

 
The ‘renice’ limit and reservation options will dynamically lower or raise, respectively, 
the base system scheduling priority of the owner process for the slice. “Reserving” a 
‘renice’ reservation will raise the process priority if its priority after slice association is 
too low. Conversely, setting a ‘renice’ limit will lower the process priority if its priority 
after slice association is too high. Note that the POSIX limit for scheduling priority range 
is from –20 (lowest) to 19 (highest). 
 
Important Note: Slice partitioning rules are applied only when new slices are created. 
Ideally, newly installed limits and reservations should be retroactively applied to existing 
slices. However, our prototype does not do this. Accordingly, a GINSU administrator 
should define slice/traffic sorting rules early, before any such traffic is processed by the 
host; or, if protective traffic limits have been installed, arrange for the effective service to 
restart any existing connections. 
 
When the ginsu_low module is first loaded, it waits for additional signals from the user 
before commencing full operation. The GINSU administrator may separately enable or 
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disable slice sorting, lazy receiver processing, or ingress traffic-shaping by setting a 
special GINSU-specific socket option using the standard UNIX setsockopt() function. 
These functions may be enabled or disabled at any time. The following snippet of C code 
demonstrates how this is done: 
  

#define GINSU_SIOCTL  40 
#define GINSU_SIOCTL_START  1 
#define GINSU_SIOCTL_STOP  2 
#define GINSU_SUBSYS_SLICE  1 
#define GINSU_SUBSYS_SHAPING 2 
#define GINSU_SUBSYS_LRP  3 
 
int fd; 
struct { int command; int what; } args; 
 
/* get a socket */ 
fd = socket(PF_INET, SOCK_DGRAM, PF_UNSPEC); 
 
/* start slice sorting */ 
args.command = GINSU_SIOCTL_START; 
args.what = GINSU_SUBSYS_SLICE; 
setsockopt(fd, SOL_IP, GINSU_SIOCTL, &args); 
 
/* start lazy receiver processing */ 
args.command = GINSU_SIOCTL_START; 
args.what = GINSU_SUBSYS_LRP; 
setsockopt(fd, SOL_IP, GINSU_SIOCTL, &args); 
 
/* stop lazy receiver processing */ 
args.command = GINSU_SIOCTL_STOP; 
args.what = GINSU_SUBSYS_LRP; 
setsockopt(fd, SOL_IP, GINSU_SIOCTL, &args); 
 
/* when done, close (release) the socket */ 
close(fd); 

 
The GINSU source distribution includes simple utilities written in Perl for managing this 
process from the command line. The ‘up’ and ‘down’ utilities can be used once the 
GINSU modules have been loaded as follows: 
 
 up: usage: up <subsystem1> […<subsystemN>] 
  where <subsystem> is one of SLICE, LRP, or SHAPING 
 
 down: usage: down <subsystem1> […<subsystemN>] 
  where <subsystem> is one of SLICE, LRP, or SHAPING 

 
Note that once slice-sorting has commenced, it must be stopped before the ginsu_low 
module may be unloaded with the Linux ‘rmmod’ (remove module) loadable kernel 
module management utility. 
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2.2.2  Startup Sequence 
 
Once the ginsu_low module is initialized it immediately begins intercepting packets as 
they arrive from the network. This is done using a hook function registered with the 
Linux ‘netfilter’ packet interception facility on the NF_IP_PRE_ROUTING chain. From 
within this hook function GINSU gains control upon the reception of a packet and may 
modify, steal, or do nothing with the packet, before returning control to the Linux kernel. 
Within GINSU, each packet is first processed by the dynamic packet filter (DPF) facility, 
which attempts to match the contents of the packet to a trie of {offset,length,mask,value} 
tuples. These tuples are installed automatically by ginsu_low as sockets are created and 
bound to transport endpoints by applications. A DPF lookup operation returns either a 
slice pointer or the root, or default, slice pointer if an explicit listener was not found. The 
default slice operates with low priority. This arrangement automatically prioritizes 
expected traffic over unexpected, potentially unauthorized (or attack) traffic.  
 
 

2.3  The Dynamic Packet Filter (DPF) API 
 
The DPF trie is managed by the following functions: 
 

void ginsu_dpf_begin (struct dpf_ir ** ir); 
void ginsu_dpf_end (struct dpf_ir ** ir); 
int  ginsu_dpf_insert (struct ginsu_sock * ss, struct dpf_ir * ir); 
int  ginsu_dpf_delete (struct ginsu_sock * ss); 
void ginsu_dpf_printir (char * buf, struct dpf_ir * ir); 
int  ginsu_dpf_atoms (struct dpf_ir * ir); 

 
DPF rules are constructed out of one or more atoms specified with these functions: 
    

Filter creation routines. nbits corresponds to 8, 16, 32 --  depending on the 
operation. msg[byte_offset:nbits] means to load nbits of the message at 
byte_offset. 

 

Compare message value to constant: 
msg[byte_offset:nbits] & mask == val 

  
void ginsu_dpf_meq8 (struct dpf_ir * ir, u_int16_t byte_offset,  

u_int8_t mask, u_int8_t val); 
void ginsu_dpf_meq16 (struct dpf_ir * ir, u_int16_t byte_offset,  

u_int16_t mask, u_int16_t val); 
void ginsu_dpf_meq32 (struct dpf_ir * ir, u_int16_t byte_offset,  

u_int32_t mask, u_int32_t val); 
 

Compare message value to constant: 
msg[byte_offset:nbits] & mask != val 

 
void ginsu_dpf_not_meq8 (struct dpf_ir * ir, u_int16_t byte_offset, 

u_int8_t mask, u_int8_t val); 
void ginsu_dpf_not_meq16 (struct dpf_ir * ir, u_int16_t byte_offset, 

u_int16_t mask, u_int16_t val); 
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void ginsu_dpf_not_meq32 (struct dpf_ir * ir, u_int16_t byte_offset, 
u_int32_t mask, u_int32_t val); 

 

Shift the base message pointer:  
msg += (msg[byte_offset:nbits] & mask) << shift;  

 
void ginsu_dpf_mshift8 (struct dpf_ir * ir, u_int16_t offset,  

u_int8_t mask, u_int8_t shift); 
void ginsu_dpf_mshift16 (struct dpf_ir * ir, u_int16_t offset,  

u_int16_t mask, u_int8_t shift); 
void ginsu_dpf_mshift32 (struct dpf_ir * ir, u_int16_t offset,  

u_int32_t mask, u_int8_t shift); 
 

Shift the base message pointer by a constant: 
msg += nbytes. 

 
void ginsu_dpf_shifti (struct dpf_ir * ir, u_int16_t nbytes); 

 
 
The GINSU DPF facility is a port of the dynamic packet-filtering subsystem of the MIT 
Exokernel. Accordingly it has its strengths – simplicity and efficiency – and its 
weaknesses – lack of support for packet headers of variable size, or for fragmented IP 
packets. We have partially implemented a countermeasure for the latter shortcoming: a 
special GINSU kernel process that will consume fragmented IP packets, reassemble 
them, and then either retry the DPF process once all fragments have been received, or 
discard partially reassembled packets if not all fragments are received within a few 
seconds. However, this code remains untested and probably will not function correctly 
without minor bug fixes. Regarding the former shortcoming, the AMP project at Network 
Associates Laboratories encountered this limitation and addressed it by augmenting DPF 
with a special operator that would shift the base message pointer based on special 
knowledge of the IPv4 and TCP header structures. In this way, filters could be specified 
as if the variable portions of those headers simply did not exist. A refined GINSU 
prototype could implement similar functionality. 
 

2.4  Queue Management 
 
Once traffic is sorted it is then categorized for traffic-shaping according to any bandwidth 
limits or reservations associated with the matching slice. Traffic-shaping is performed by 
a generic framework that can support multiple arbitrary queuing disciplines. Currently, 
we provide a hierarchical token bucket queuing discipline, implemented in the separate 
ginsu_sch_htb module, and a simple rate-limiting scheme implemented within ginsu_low 
that does not depend on any external module. Under normal operation, the ginsu_sch_htb 
module is automatically loaded and configured when bandwidth limits or reservations are 
set via the GINSU iptables interface.  
 
Ingress packet-queuing disciplines are managed with these functions: 
 

int ginsu_qdisc_register (struct ginsu_qdisc_ops *); 
int ginsu_qdisc_unregister (struct ginsu_qdisc_ops *); 
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Shared rate tables are managed with these functions: 
 

struct ginsu_qdisc_rtab * ginsu_qdisc_get_rtab ( 
struct ginsu_qdisc_ratespec *,  
u_int32_t *); 

void ginsu_qdisc_put_rtab (struct ginsu_qdisc_rtab *); 

 
Internally, queuing disciplines and their associated traffic classes are instantiated, 
destroyed, and modified with these functions: 
 
 

struct ginsu_qdisc * ginsu_qdisc_create (char *, u_int32_t, 
     unsigned long *); 

struct ginsu_qdisc * ginsu_qdisc_find (struct net_device *, 
u_int32_t); 

int ginsu_qdisc_destroy (struct ginsu_qdisc *); 
int ginsu_qdisc_graft (struct net_device *, struct ginsu_qdisc *, 

u_int32_t, struct ginsu_qdisc *, struct ginsu_qdisc **); 
int ginsu_qdisc_change_class (struct ginsu_qdisc *, u_int32_t, 

u_int32_t, unsigned long *); 

 
In cooperation with the ginsu_sch_htb module, ginsu_low provides hierarchical token 
bucket traffic-shaping capabilities by default. Information on the theory of operation of 
HTB is outside the scope of this document. More information may be found at the Linux 
HTB home page, at http://luxik.cdi.cz/~devik/qos/htb/ . 
 
The ginsu_low module is the primary resource monitor. Internally it uses three major 
structures to account for network stack and host OS resource usage: ginsu_task, 
ginsu_slice, and ginsu_sock objects.  
 

2.5  Slice Scheduling 
 
One ginsu_task object is maintained for every OS task (also known as a process). Using 
this object, GINSU manages a run queue for slices with pending work: recall the earlier 
discussion regarding lazy receiver processing. LRP defers packet-processing work when 
packets are received from the networks that are not destined for the currently executing 
process. Such packets are queued in the incoming queue of their target slice. This slice, in 
turn, is flagged as runnable and placed on the run queue of the task that owns the slice. At 
every context switch, GINSU gains control from within the system scheduler logic just 
prior to invocation of user-level code. (In order to accommodate this control transfer, the 
stock Linux kernel scheduler must be modified with a small patch included in the GINSU 
source distribution. The kernel must then be recompiled and reinstalled.) Here, pending 
slices are removed from the run queue within the corresponding ginsu_task object and 
their incoming packet queues are serviced. In order to prevent excessive network level 
work from consuming all of the time slice for newly running process, further LRP 
processing is deferred until the next available time slice if LRP processing consumes 
more than 60% of the current time slice. (This corresponds to a period of six milliseconds 
on unmodified Linux kernels for the Intel IA-32 architecture.) This is done to insure that 
the user level application code has a reasonable amount of CPU time in order to make 
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progress given the new input from the network. Currently, this limit is hard-coded, but 
may be manually adjusted and put into effect by recompiling and reinstalling the GINSU 
modules. 
 
Every ginsu_task object also contains a reference to the root slice for the process. In 
order to simplify the slice hierarchy, every task is allocated a root slice, which is 
thereafter the initial and default owner for every slice subsequently created for traffic 
destined for that process. Thus, within the GINSU resource hierarchy, ultimately for 
every slice created a ginsu_task object is a parent object of that slice. When and if the 
task is destroyed by the operating system, as the task object is released, the resource 
framework will automatically and efficiently release any child ginsu_slice object, and 
any children of those slices, and so on, preserving endpoint tear down semantics upon 
application exit. The ginsu_low module, therefore, does not need to, and does not, 
explicitly manage this process.  
 

struct ginsu_task 
{ 
    unsigned long magic; 

     spinlock_t lock; 
     unsigned long flags;  /* operational mode */ 
     struct task_struct * task; /* corresponding Linux task */ 
     /* slice run queue */ 
     TAILQ_HEAD(ginsu_slice) runq; /* slices with work pending */ 
     TAILQ_HEAD(ginsu_slice) doneq; /* slices with work completed */ 
     struct ginsu_slice * root; /* root slice for this task */ 
     ginsu_resource_t r;  /* pointer to resource for this task */ 

}; 

 
Figure 4:  The GINSU Task Structure 

 
2.5.1  Accounting Practices 
 
For every traffic slice allocated for traffic-sorting or resource management bookkeeping,  
a ginsu_slice object is created and associated with an owner process. A locally unique 
integer identifier, termed a slice identifier (or SID), identifies every slice. There are also 
two work queues into which units of network protocol processing work may be placed to 
be serviced at a later time – one for packets received from the network, and one for 
packets scheduled by the owner process for transmission. The ginsu_slice object also 
contains state for use in limiting CPU and network bandwidth consumption in a 
hierarchical manner.  
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struct ginsu_slice 
{ 

     unsigned long magic; 
     spinlock_t lock; 
     unsigned long flags;  /* operational mode */ 

    struct ginsu_task * owner; /* owner GINSU task */ 
    int sid;    /* slice identifier */ 
    /* work queues */ 
    struct {    /* network work queues */ 

         struct sk_buff_head q;  /* sliceq[0] is RX queue */ 
         atomic_t count;   /* sliceq[1] is TX queue */ 

        atomic_t avail; 
         ginsu_sliceq_func_t func; 

    } sliceq[2]; 
     /* CPU limit bookkeeping */ 

    unsigned long ts_cap;  /* max timeslice portion allowed (1..100) */ 
     unsigned long ts_cur_cap;  /* currently consumed timeslice portion */ 

    volatile unsigned long * ts_cap_p; /* current CPU limit in force */ 
     volatile unsigned long * ts_cur_cap_p; /* current use for limit in force */ 
     /* linkage */ 
     TAILQ_ENTRY(ginsu_slice) runq_link; 
     ginsu_resource_t r;  /* pointer to resource for this slice */ 
     void * root_dir;   /* procfs root dirent for this slice */ 
     void * sock_dir;   /* procfs socket dirent for this slice */ 
     /* simple (non-HTB) shaping bookkeeping */ 
     unsigned long max_rate;  /* max rate (per second) */ 
     unsigned long last;  /* rate for current 1-second interval */ 

}; 

 
Figure 5:  The GINSU Slice Structure 

 
For every high-level Linux socket created, a corresponding ginsu_sock object is created 
in order to store GINSU-specific per-socket state. This state includes: the identifier of any 
DPF filter inserted to direct packets to the appropriate active endpoint; the identifier of 
the ingress traffic-shaping class (if any) to which the endpoint’s traffic will belong; and a 
list of all low-level Linux sockets created to service the endpoint. (There may be more 
than one low-level Linux socket created over the lifetime of the corresponding high-level 
Linux socket.) Every ginsu_sock object is associated with an owner slice. If the owning 
slice is destroyed, because of implicit actions taken by the resource management 
framework, all child ginsu_sock objects will be released as well. Also, during GINSU 
socket object creation, we overwrite a method pointer in the Linux kernel socket structure 
so we may receive notification when and if all low-level Linux sockets for the endpoint 
are destroyed. When this occurs, the corresponding GINSU state is released.  
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struct ginsu_sock 
{ 

     unsigned long magic; 
     spinlock_t lock; 

    struct ginsu_slice * owner; /* owner GINSU slice */ 
     ginsu_resource_t r;   /* pointer to resource for this socket */ 
     unsigned long mark;   /* value to mark packets with for ingress QoS */ 
     int dpf_fid;    /* DPF filter identifier */ 
     int nr_sk;     /* count of associated low-level Linux sockets */ 
     LIST_HEAD(ginsu_sock_el) sk_list; /* list of associated low-level Linux sks */ 
     void * proc_data;    /* DPF filter text for ginsu_proc */ 
     /* pointers to simple (non-HTB) shaping bookkeeping in force */ 
     volatile unsigned long * max_rate_p; 
     volatile unsigned long * last_p; 

}; 
 

Figure 6:  The GINSU Sock Structure 
 
2.5.2  Resource Constraint Enforcement 
 
Resource usage is tracked in various ways that differ for the major resource classes. Flow 
bandwidth monitoring is implicit in the operation of the HTB component, so this state is 
distributed among the installed flow class configuration. GINSU also provides a very 
simple rate-limiting scheme that may be used in lieu of HTB queuing for LIMIT targets 
only. If this latter scheme is used, flow bandwidth monitoring is performed using state 
stored in ginsu_slice structures. The per-slice count of currently connected network 
flows is maintained in resource attributes within each slice resource. Likewise, slice 
resources are annotated with any connection limits installed by the administrator. At 
connection establishment time, within either the connect() or accept() syscalls, a breadth-
first search of the slice resource hierarchy is performed. If the allowed connection count 
is exceeded, or a new connection would prevent a reservation from being serviced, the 
new connection will be rejected. CPU timeslice limits are maintained within the resource 
data for each slice. When child slices are associated with a slice with an active CPU limit, 
pointers within those children are updated to point to the appropriate fields in the parent. 
During LRP processing, these pointers are followed to insure that the aggregate 
processing time of all children of a CPU-limited slice do not exceed the limit in force. 
Per-slice socket buffer (SKB) limits are enforced whenever incoming work is to be 
posted to a work queue. If an in-force queue limit would be exceeded, the incoming 
packet is instead dropped. Likewise, if the size of the incoming packet, when added to the 
sum of the sizes of all queued packets, would exceed a limit on maximum allowed buffer 
memory for a slice, the incoming packet is also dropped. 
 
When resource limits are exceeded or when resource utilization approaches a point where 
load must be shed in order to preserve a reservation, GINSU takes automatic action to 
enforce in-force limits and reservations. As these actions are undertaken, messages are 
sent to the system logging facility indicating the application(s), endpoint(s), and 
resource(s) identified as the cause of the out-of-line condition, what action was taken, and 
the result of that action.  
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2.5.2.1  Resource Constraint Violation Logging 
 
 
When resource limits are exceeded, or when current system conditions require proactive 
action to maintain a specified resource reservation, GINSU will send a detailed message 
to the system logging (syslog) facility. A table describing the format of these messages 
and presenting an example follows: 
 
 

timestamp module facility Resource message data 
     
Jun 30 14:21:26 GINSU: SLICE: Socket limit sid=31 now=100 limit=100 

 
 
The following table enumerates all resources managed by ginsu_low for which messages 
may appear in the syslog upon an exception: 
 
 

facility resource Exception 
   
SLICE sockets Slice socket limit exceeded. 

“limit exceeded: sid=%d euid=%d egid=%d limit=%d” 
 connections Slice connection limit exceeded (includes half-open). 

“limit exceeded: sid=%d euid=%d egid=%d limit=%d” 
 queue length Slice queue entry count limit exceeded. Note: Messages for 

this exception will be rate-limited. 
“limit exceeded: sid=%d euid=%d egid=%d limit=%d” 

TASK timeslice Timeslice limit in lazy receiver processing exceeded. 
“limit exceeded: pid=%d sid=%d euid=%d egid=%d 
limit=%d\%” 

SHAPING bandwidth Moderate to high drop rate indicates class bandwidth limit 
exceeded. Note: Messages for this exception will be rate-
limited. 
“limit exceeded: sid=%d euid=%d egid=%d limit=%d” 
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2.6  ginsu_proc 
 
The ginsu_proc module provides a read-only view into internal GINSU state via a file tree in the Linux 
/proc filesystem.  
 

/proc/net/ginsu/ 
              | 

               +-- stat 
               | 

              +-- slice/ 
                      | 
                      +-- <1st slice> 

                       |       | 
                       |       +-- stat 

                      |       | 
                       |       +-- sock/ 
                            …              | 
                            |              +-- <1st socket> 
                       |              … 

                      |              +-- <Nth socket> 
                       | 
                       +--- <Nth slice> 
 
 
The top-level, or global, ‘stat’ file provides a read-only listing of system-wide state, 
counters, and statistics. Various parts of GINSU register functions on the 
GINSU_HOOK_GET_PROC_STATS hook. When the user requests ‘stat’ this hook is 
invoked and the results are then passed to userspace. Below is an example listing from 
the global ‘stat’ file: 
 

modeflags: SLICE LRP  current GINSU operating mode 
slices: 13    number of slices active in system 
sockets: 56    number of sockets active in system 
slice_immed: 78644   packets processed immediately (in context) 
slice_posted: 419857  packets deferred into slice queues 
slice_lrp: 419857   packets deferred for lazy receiver processing 
slice_dropped: 491   packets dropped from slice queues 
slice_oom: 0    packets dropped for insufficient buffer space 
cpu_overlimit: 0   global count of timeslice over limit conditions 
queue_overlimit: 0   global count of slice queue over limit conditions 
sock_overlimit: 0   global count of socket alloc over limit conditions 
connect_overlimit: 0  global count of connection over limit conditions 
dpfd_rx: 0    packets received by defragmenter 
dpfd_inject: 0   packets reinjected by defragmenter 
dpf_atoms: 59    number of active DPF atoms 
dpf_atoms_highwater: 332  max number of DPF atoms active at one time 
dpf_match_root: 2275  packets matching trie root (default) 
dpf_match_leaf: 496221  packets matching trie leaf  
pkt_rx: 498496   packets received by host 
pkt_tx: 307652   packets transmitted by host 
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pkt_should_lrp: 0   packets received with LRP disabled 
pkt_marked: 193277   packets marked by ingress traffic-shaping 
pkt_dropped: 1159   packets dropped by ingress traffic-shaping 
pkt_stolen: 419857   packets “stolen” from Linux by GINSU 
pkt_replaced: 4732   packets replaced by ingress traffic-shaping 
pkt_bandwidth_overlimit: 0  global count of bandwidth over limit conditions 

 
 
The per-slice ‘stat’ file provides statistics and state information regarding a particular 
slice, as well as the values of any counts or limits that may be present as an attribute in 
the slice’s resource structure. Below is an example listing from a per-slice ‘stat’ file: 
 
 
 
 /proc/net/ginsu/slice/7/stat: 
 

id: 7     slice identifier 
owner: 622 (xinetd)   owner process PID and name 
flags: ON_RUNQ   current slice operating mode 
sliceq[RX]: count 3 avail 8 receive slice queue length and limit 
sliceq[TX]: count 0 avail 8 transmit slice queue length and limit 
nr_sockets: 1    number of sockets influenced by this slice 
nr_connections: 1   number of connections influenced by this slice 

 
 
Below is an example listing from a per-socket file: 
 
 /proc/net/ginsu/slice/7/sock/c0ab88de: 
 

owner: 7    owner slice identifier 
fid: 9     DPF filter identifier 
mark: 0x0000    ingress traffic queueing mark 
filter: [    DPF filter  
  m[14:8] & 0xf0 == 0x40 && 
  m[20:16] & 0xff3f == 0x0 && 
  m[23:8] & 0xff == 0x6 && 
  m[30:32] & 0xffffffff == 0x100007f && 
  m[36:16] & 0xffff == 0x180 
] 

nr_sk: 1    number of associated low-level Linux sockets 
socket: sk=cf9e9460 [  low-level Linux socket state 
  family: 2 
  type: 1 
  protocol: 6 
  refcnt: 1 
  rcvbuf: 87380 
  sndbuf: 16384 
  rmem_alloc: 0 
  wmem_alloc: 0 
  wmem_queued: 0 
  receive_queue_len: 0 
  write_queue_len: 0 

                  ] 
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3.  Demonstration 
 

Our demonstration illustrates a typical application of a WebShield-like device as a 
boundary security gateway with a network-accessible management interface.  We show 
how such a device can be used to protect a subnet by inspecting web and messaging 
traffic, but must often be “over engineered” (provisioned far in excess of typical capacity) 
to guarantee service levels.  For instance, the demonstration shows that a gateway device 
can not easily ensure service levels to satisfy both client throughput and management 
interaction while under heavy loads.  
 
The benefit of the GINSU processing, as demonstrated, reveals that for a given level of 
hostile (or unwarranted) traffic, the same hardware can appear both more responsive and 
more tolerant of load spikes.  Additionally we demonstrate how, without the GINSU slice 
isolation features, hostile traffic can adversely affect traffic through the gateway and 
interfere with a protected client’s use of the network.  GINSU, through its use of “Lazy 
Receiver Processing” and “Per-Slice Queues” is able to efficiently and effectively shed 
excess traffic based on administrator-applied limits and reservations, before that traffic is 
able to consume sparse resources on the gateway device 

 

4.  Future Work 
 
The Guaranteed Internet Stack Utilization (GINSU) project comes to the FTN program 
via the ATIAS Survivable Wired and Wireless Infrastructure for the Military (SWWIM) 
Focused Research Topic.  GINSU seeks to guarantee network accessibility by an end-
host, even in the event of an attempted denial of service attack.  To provide this guarantee 
of accessibility, we augment an existing operating system’s network stack and kernel 
with fine-grained resource monitoring.  We provide mechanisms for reserving and/or 
limiting scarce resources based on the ultimate consumer of those resources.  We enable 
attribution of resources based on a rich collection of packet, user, and process attributes.  
The combination of source partitioning and attribution gives administrators considerable 
flexibility and power in determining how his system is to be used. 
 
GINSU technology has been proposed in three upcoming research projects.  We feel that 
GINSU brings a powerful policy enforcement and resource tracking mechanism to these 
projects, and the integration of GINSU into larger, enterprise-scale systems adds a 
number of useful extensions to the GINSU feature set. 
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